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The thermally developing laminar forced-convection flow and heat transfer characteristics
in elliptic tubes with four longitudinal internal fins is numerically investigated in this article
via the boundary-fitted coordinate system. The control volume-based finite-difference
technique is applied to obtain the solution utilizing the numerically generated boundary-
fitted coordinate. The elliptic tubes are maintained at a uniform wall temperature,
peripherally as well as axially. Since the fins are considered to be continuous and of zero
thickness, the results presented are in terms of isotherms, variation of bulk temperature,
and Nusselt number in the entire thermal region of the elliptic duct for various values of
relative fin heights. Also studied and graphically illustrated is the effect of minor-axis to
major-axis ratios in the elliptic duct with internal fins on the fully developed and developing
heat transfer characteristics. For the special case of a circular duct, the results are compared
with some limited findings in the literature, and very good agreement is obtained.
Furthermore, the results exhibit a high heat transfer coefficient, expected in the entrance
region, approaching asymptotically fully developed values at greater axial distances. The
significance of each curve is also discussed in detail.
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Introduction

Longitudinal fins within ducts are often employed for the
purpose of heat transfer augmentation. Such internally finned
tubes find numerous applications in compact heat exchanger
devices. A literature survey by Eckert,14 Kakac5 Shah and
London,6  Soloukhin and Martynenko,’ and Martynenkos
indicates that significant attention has been devoted in recent
years to the investigation of laminar fluid flow and heat transfer
in internal finned tubes. However, these investigations are pre-
dominantly concerned with forced convection in the developing
and fully developed region of the circular duct. Among these,
Hu and Chang,9 Nandakumar and Masliyah,” Soliman and
Feingold, l1 Soliman,”  Prakash and Liu,13 and Rustum and
Soliman14  studied the uniform wall temperature and uniform
wall heat flux boundary conditions. However, for noncircular
geometries of elliptic ducts with longitudinal fins, knowledge
of fluid flow and forced convection is absent in the open
literature. Recently, an investigation of forced-convection heat
transfer in the entrance region of the semicircular duct with
internal fins subjected to a uniform wall temperature was
published by Zhang et al. l5 They solved the three-dimensional
(3-D) energy equation using the method of lines (MOL). Their
results contained various relative fin heights, as well as different
numbers of fins.

As in the case of convection heat transfer in the elliptic duct
but without internal fins, there are only a few papers published
in the open literature. For instance, Tao16 and Schenk and
Han” dealt with convective heat transfer for laminar flows in
tubes of elliptic cross section maintained under constant heat
flux. Ebadian’s investigated convective heat transfer in an
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elliptic duct subjected to constant wall temperature. They
solved for thermally fully developed laminar flow using the
successive approximation method. Again, none of these investi-
gations treats the augmentation of heat transfer using longi-
tudinal internal fins.  Therefore, the main objective of this article
is to analyze the enhancement of convective heat transfer in
the entrance region of the elliptic duct through the attachment
of longitudinal internal fins. The duct is also subjected to
constant wall temperature. Unlike the circular duct in which,
in general, the effects of the number of fins is investigated, flow
and heat transfer in the elliptic duct is mainly dependent on
the location of internal fins. Thus, only four fins are chosen in
this study, and they are located on the horizontal and vertical
symmetry lines. Figure 1 illustrates the elliptic duct geometry
with four internal fins. Three minor-axis to major-axis ratios
of cc*=O.25,  0.5, and 0.8 are investigated in this article. The
flow is considered to be laminar and the physical properties
are also assumed to be constant. The developing temperature in
these geometries is determined by solving the three-dimensional
energy equation via the control volume-based finite-difference
method, where the relative fin height as well as different
minor-axis to major-axis ratios are included. Due to the
complexity of the tinned elliptic duct geometry, the numerically
generated boundary-fitted coordinate system is applied to
discretize the computational domain. Accordingly, the governing
equations are formulated in the boundary-fitted coordinate
system and then are solved successively. In addition, an
independent grid test is conducted to optimize the accuracy of
the results obtained. Thus, the variation of isotherms, the bulk
temperature, and the local Nusselt number is presented in the
region of thermal development for different minor-axis to
major-axis ratios and several relative fin heights. Also presented
in this article are the results for the fully developed flow
condition. For the special case of the circular duct in the region
of thermal development, only two papers dealing with the same
cross section, but without longitudinal tins, have been published
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Analytical formulation 

X 

The problem considered here is that of an elliptic duct, as shown 
in Figure 1. The elliptic duct has four fins that are distributed 
on the major and minor axes of the ellipse. The fins are assumed 
to be of zero thickness and with different relative fin heights. 
The flow in the duct is considered to be laminar and hydro- 
dynamically fully developed, but thermally developing in the 
entrance region of the duct. The fluid is Newtonian with 
constant thermal properties. The governing equations in terms 
of dimensionless variables can be expressed as 

Figure I Fin tube geometry 

(Shah and London 6 and Rustum and Soliman~4). In this case, 
the result with no longitudinal fins is compared with the 
above-cited papers and an excellent agreement is obtained. For  
the special case of the circular duct, the variation of the local 
Nusselt number with internal fins has also been compared with 
the results of Rustum and Soliman, t4 and again, an excellent 
agreement between the two is obtained. 

It is believed that availability of these solutions is important 
for the designer and practitioner in areas such as compact heat 
exchangers, turbines, etc. 

Momentum Equation 
~2 W ~2 w 
dX 2 ¢-~y~+ 1 = o  (1) 

Energy Equation 

dO /~20 ~20"x 
C 12) 

where 

C = - -  (3) 
w,. 

where in the above equations, W represents the dimensionless 
velocity, 0 the dimensionless temperature, Dhf the hydraulic 

Notat ion  

A Cross-sectional area, m 2 
a Semi-major axis of elliptic duct, m 
b Semi-minor axis of elliptic duct, m 
C Coefficient, Equation 3 
Cp Specific heat at constant pressure, J kg-~ K -  
Dhf Hydraulic diameter of duct with fin, m 
Dhs Hydraulic diameter of duct without fin, m 
F Dependent variable, Equation 24 
f Friction factor 
Ho Fin height, m, Figure 1 
Hb Fin height, m, Figure 1 

H= nb 
H* Relative height of fin, - 

a b 

h Heat transfer coefficient, W m -  2 K -  
J Jacobian transformation, Equation 23 
k Thermal conductivity, W m -  t K -  1 
L r Dimensional thermal entrance length, m 
L* Dimensionless thermal entrance length, 

LT Lr 
DhfRePr D2fW=~ -1 

n Outward normal direction on boundary 

hDhf 
Nu Nusseit number, 

k 

P Perimeter, m 

v 
Pr Prandtl number, - -  

~r 
p Pressure, kN m -  2 

wmDhf wmDhs 
Re Reynolds number, or - -  

V V 

T Temperature of fluid, K 

hDhs Equations 12 and 13 
o r  k ' 

T b Bulk temperature of fluid, K 
T~ Inlet temperature of fluid, K 
Tw Circumferential wall and fin temperatures, K 

W Dimensionless velocity, #w 
a2 dP 

dz 'ff IV= Dimensionless mean velocity, ~ WdA 

w Velocity, m s-  1 lff 
w,, Mean velocity (m s- 1), A w dA 

x y  
X, Y Dimensionless transversal coordinates, , 

a a 

x, y Dimensional transversal coordinates, m 

z 
Z Dimensionless axial coordinate, - -  

DhfRePr 
z Dimensional axial coordinate, m 

Greek symbols 
c~ Coefficient, Equation 16 
~r Thermal diffusivity, m 2 s-1 
~* Minor-axis to major-axis of the elliptic duct 
fl Coefficient, Equation 17 
~, Coefficient, Equation 18 
p Density, kg m -  3 
/1 Dynamic viscosity, kg m -  1 s -  t 
v Kinematic viscosity, m 2 S-1 

0 Dimensionless temperature, (Tw-T____~) 
(Tw- Ti) 

( T . -  Tb) 
Ob Dimensionless bulk t e m p e r a t u r e , - -  

(Tw- T,) 
~, r/ Transversal coordinates in computational plane 
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diameter of the duct with fins, a the semi-major axis of the 
elliptic duct, and X, Y, and Z two dimensionless transversal 
coordinates and one dimensionless axial coordinate, respectively. 
Taking advantage of the symmetry, only a quarter of the duct is 
used as the computational domain. The preceding equations 
are also subjected to the following boundary conditions: 

W=0,  0 = 0 on the wall of the duct and on the fins (4) 

0W 0 00 0 
~ n  = ' Onn = ' on the symmetrical line (5) 

and 

0=1,  Z = 0  (6) 

P a r a m e t e r s  o f  i n t e r e s t  

The characteristics of fluid flow and heat transfer in the duct 
may be represented by the product of the friction factor and 
the Reynolds number , f  Re, the dimensionless bulk temperature, 
and the Nusselt number. For the purpose of comparing the 
results of the finned tube with the smooth tube (without fins), 
two different characteristic lengths are used here. One of them 
is the hydraulic diameter of the smooth elliptic duct without 
fins, Dh,, and the other is the hydraulic diameter of the elliptic 
duct with internal longitudinal fins, Dht. These are defined as 
follows: 

4A 
Da , -  (7) 

P 

4A 
Dhf -- (8) 

P + 4(H= + Hb) 

where A and P represent the cross-sectional area and the 
perimeter of the elliptic duct, respectively. Now, defining fRe,  
based on the above hydraulic diameters, one can write 

2 (o.. V 
- h, ~ . . . .  ( 9 )  

w.I t , ~ / w . t < , )  
P - U  

(Vtl.DhfX~ 2 
- -  h f  ~ - .  2 - -  = - -  t - ~ - )  a (10) 

7o~,\ 

and the local dimensionless bulk temperature is calculated by 
the following equation: 

~a WO dA o~(z)- ~-~ j~ ( l l )  

The two Nusselt numbers are defined as follows: 

(Nu=) = _ ~  (Dhs~2 1 dO> (12) 

1 1 dO b 
(Nu=)s= (13) 

40~ dZ 

where (Nu=), and (Nu=)s are defined based on the hydraulic 
diameter of the smooth elliptic duct (without fins), Dh,, and on 
the hydraulic diameter of the elliptic duct with fins, Dhf, 
respectively. 

Ebadian 

S o l u t i o n  p r o c e d u r e  

Grid generation 

Due to the complexity of the finned elliptic duct, a numerically 
generated boundary-fitted coordinate system is applied to solve 
the difficulties with discretizing the computational domain and 
developing a general computer program. The basic idea of the 
boundary-fitted coordinate system is to have a coordinate 
system such that the computational domain boundary coincides 
with the coordinate lines. One of the methods often used in 
this type of analysis is suggested by Thompson 19 and Thomas 
and Middlecoff. 2° The grid point distribution is controlled 
according to this reference. Therefore, the domain trans- 
formation between physical coordinates (X, Y) and the 
boundary-fitted coordinates (~, r/) is achieved by solving the 
two coupled system of equations: 

/CO2X ~X xl ~2X /CO2X aX'~ 
(14) 

(~2y COyN cO2y /t~2y cOyX 
.5) 

where 

\cO,/ t a~ / ' 

fl ax  ax  aY aY = - -  - - + - -  - -  ( 1 7 )  

Y- \  a~ ) karl '  
ox oax Oy cO2y 

t a~ cO~a a~ O~ 2 
¢ = (19) 

cO~ ) \cOIl  
cOX cO2X aY cO2Y 

~ Oq2 cOO CD1 a 

0 :  T . 

Equations 14 and 15 are solved by using the successive over 
relaxation (SO1) method subjected to a grid distribution given 
on the boundary, The resulting grid constructions in Figures 2a 
and 2b illustrate the grids in the physical plane (X, Y), and 
computational plane (~, q), respectively. 

Finite difference 

At this stage, it is necessary to transfer the governing equations 
1 and 2 to the computational domain as 

and 

- (22) 

with 

cOX cOY cOX cOY 
J =  cO~ cO~ a,~ CO~' (23) 

where ~, fl, 7 have the same definition as in Equations 16, 17, 
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(o) 

=-- × 

step size deviates less than 0.1% compared with the axial 
marching step size of AZ=0.000125. Additionally, all of the 
computations have been conducted on a Micro VAX 8800. 

l (b) 
I l l l a | | l l | i l | l l U l l | l l  
I l l l l l l l l l l l l l l l l l l l l  
I l l l l l i l l l l l l l l l l l l l l  
l l l l l l l l l l l l l l l l l l l l l  
I l l l l l l l l l l l l l l l l l l l l  
l l l l l l l l l l l l l l l l l l l l l  
l i m m m m m m i l m i i l l m i i B i |  
I m m m m m m m m m m m m m m m m m m m l  
I m i m m i m m i i m m i m i i i m m m i  
l m m m m l m l m m m m m m l m l m m m l  
i m m m m m m m m m m m m m m m m m m m l  
m m l m l m m m m m m m m m m m l m m m l  
i m m m m m m m l m m m m m m m l l m m l  
m m m m m m m l l m m m m m l m m m m l l  
I m m m l l l m m m m m l l m m m m m l l  
mmmmmmmmmmmmmmmmmmmmm 
mmmmmmmmmmmmmmmmmmmmm 
mmmmmmmmmmmmmmmmmmmmm 
mmmmmmmmmmmmmmmmmmmmm 
mmmmmmmmmmmmmmmmmmmmm 
mmmmmmmmmmmmmmmmmmmmm 

Results and discussion 

The fully developed friction factors and the Nusselt numbers 
for the elliptic duct with fins are numerically calculated and 
documented in Table 2. Both (fRe),, (fRe)f  and (Nu)=, (Nu)f 
are given in this analysis for convenience. Also, the data shown 
in Table 2 are used to draw the curves in Figures 3 and 4, 
where the (fRe)= to (fRe)o ratio and the (Nu), to (NU)o ratio 
are presented graphically for different H* and =*. (fRe)o and 
(Nu)o refer to the corresponding case of the smooth elliptic 
duct without fins. Inspection of these curves indicates that the 
friction factor can be increased by increasing the relative fin 
height. It is also evident that the Nusselt number, (Nu)=, 
increases and achieves a maximum value, and then decreases 
as the relative fin height increases. The maximum Nusselt 
number occurs around H* =0.8 ~0.9 for all calculations with 
~* =0.25, 0.5, 0.8, 1.0. This behavior is, in fact, similar to the 
circular finned duct subjected to uniform heat flux boundary 
conditions. 6 For =*=1 and H* f 0  (circular duct case), the 
results obtained for (fRe),=63.99 and (Nu)~=3.670 are in 
excellent agreement with the published values of 64 and 3.658, 
respectively. 6 For the case of =* = 1 and H* = 1, the elliptic duct 

Figure 2 (a) Grid configuration in physical domain; 
configuration in computational domain 

(b) grid 

and 18. Thus, by using a control volume-based finite difference 
procedure (Patankar 21), the governing differential equations 21 
and 22 are reduced to a set of algebraic equation systems. In 
the process, the nonlinear cross-derivative, 02/0~ Or/, is treated 
as a source term. It is apparent that iteration is needed to 
obtain the solution. Since Equations 21 and 22 are not coupled, 
the momentum equation is solved first to find the velocity field, 
and then the 3-D energy equation with its parabolic properties 
is solved by the marching method. Also, due to the nonlinearity 
of the source term, several iterations are needed to obtain the 
temperature field in each marching step. The following con- 
vergence criterion was chosen for this study, 

k + l  k 
IIFij -FiaJl • < 10- 5, (24) 

~k+ 1 

where F refers to the dependent variable W or 0, respectively, 
k stands for the kth iteration, and I]" IIoo is the infinite norm. 
When the convergence temperature field is satisfied, the local 
bulk temperature and the Nusselt number are calculated from 
Equations 11 through 13. 

To assure the accuracy of the results presented, numerical 
tests were performed for the elliptic duct to determine the effects 
of the grid size. The tabular results are given in Table 1. 
Comparison of these results with that given by Shah and 
London 6 indicates that for the cases considered here, the 21 x 21 
grid is adequate. Therefore, the successive calculations are 
performed based on this grid size. The axial marching step size 
of AZ = 0.00025 is used in all the computations. The results 
obtained for the bulk temperature using the above marching 

Table I Grid independent test results 

(fRe) 

Shah and 
¢* Grid Present study London e Error (%) 

0.25 21 x 21 72.21 72.16 0.058 
27 x 27 72.20 72.16 0.050 

21 x 21 67.26 67.26 0.007 0.5 
31 x 31 67.27 67.26 0.003 

0.8 21 x 21 64.36 64.39 0.054 
31 x 31 64.38 64.39 0.023 

1.0 21 x 21 63.99 64.00 0.016 
31 x 31 64.00 64.00 0.00 

Table 2 (fRe) and Nu for fully developed f low 

=* H* (fRe), (Nu), (fRe)r (Nu)r 

0.0 72.20 3.78 72.20 3.78 
0.5 108.61 3.78 45.36 1.58 

0.25 0.8 270.63 12.51 69.34 3.20 
0.9 301.73 16.04 71.53 3.80 
1.0 313.62 15.85 67.26 3.40 

0.0 67.26 3.75 67.26 3.75 
0.5 0.5 133.29 4.97 50.02 1.86 

0.9 297.78 16.31 68.78 3.76 
1.0 309.20 16.11 61.71 3.21 

0.0 64.33 3.67 64.33 3.67 
0.8 0.5 135.53 5.36 50.72 2.00 

0.9 291.06 16.19 67.34 3.74 
1.0 303.38 15.96 58.91 3.10 

0.0 63.99 3.67 63.99 3.67 
1.0 0.5 140.57 5.60 51.46 2.05 

0.9 294.18 16.14 65.89 3.61 
1.0 301.82 15.96 58.40 3.09 
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Figure 3 

_ _  og= 1.o 
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Variation (fRe), 
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H* 

wi th H* 

N u z 

70-- H*= 
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50 - -  

4 0 _  
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\ 
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a ° =1.0 
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Figure 4 
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0.0 
t I 
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H* 
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w 

reduces to the circular sector duct and the results obtained for 
(fRe)f = 58.406 and (Nu)z = 3.09 agree well with the published 
results of 59.074 and 3.055, respectively, as obtained by Trupp 
and Lau. 22 

A comparison of the present results for the fully developed 
Nusselt number with Soliman 12 for the special case of the 
circular duct (=*= 1) and relative fin heights of H* =0.2, 0.4, 
0.6, 0.7, 0.8 is documented in Table 3. Inspection of the data 
in this table indicates very close agreement between the two 
studies at a low relative fin height, H*, that deviates at a higher 
H*. This difference is mainly due to the fact that our results 
consider zero thickness for the fin, whereas Soliman 12 used the 
fin thickness of fl = n/60 RAD. 

Generally, the thermal entrance length is equal to the distance 
from the entrance of the duct to the downstream location where 
the local Nusselt number is 1.05 times the fully developed value, 
as defined by Shah and London. 6 This definition is used in the 
present study. Table 4 presents values for the estimated thermal 
entrance length for the elliptic duct with four internal longi- 
tudinal fins. Also presented in this table are the effect of the 
minor- to major-axis ratio, =*, and the relative fin height, H*. 

The following section is a summary of the results for the 
entrance region of the elliptic duct with internal fins. The 
variation of the local Nusseli number, Nu=, in the entrance 
region of the circular duct for H* = 0 is displayed in Figure 5. 
Comparison of the results obtained with those given by Shah 
and London 6 and Soliman 12 indicates close agreement. Also 
shown in Figure 5 is a comparison of the present results for 
the circular duct with relative fin heights of H* =0.2, 0.4, 0.8 
with Soliman} 2 Further inspection of this figure indicates an 
excellent agreement between the two studies. This figure is 
provided here only to further verify the validity of the present 
method. 

Z 

Figure 5 Local Nusselt number for a circular duct 

For the finned elliptic duct, the bulk temperature, Oh, and 
local Nusselt numbers, (Nu=), and (Nu=) s, are computed in the 
development region of the elliptic duct with internal longitudinal 
fins from Equations 11 through 13, respectively. The variations 
of the local bulk temperature, 0~, isotherm lines, and the 
variation of the local Nusselt number, Nu=, of some cases are 
displayed in Figures 6 through 11. As expected, the bulk 
temperature decreases from unity in the inlet to zero (0) as the 
axial distance increases. The Nusselt number is very large in the 
entrance region, and it decreases as the axial distance increases, 
approaching asymptotically the fully developed value. Included 
in these results are the effects of relative fin heights, as well as 
the ratio of minor-axis to major-axis of the elliptic duct. 

Figure 6 represents the variation of the bulk temperature 
against the axial position for a* = 0.8. The effects of the relative 
fin height is illustrated by showing results for H*=  0.5, 0.9, 1.0. 
A similar situation occurs in the other cases. The lines of the 
isotherms at two different axial positions for ~* =0.25 and 
H* = 0.5 are illustrated in Figures 7a and 7b. These are provided 
to determine the influence of the fin on the temperature field. 
Five isotherm loops of 0=0.17, 0.33, 0.5, 0.67, and 0.83, at 
axial distance Z=0.0125, are shown in Figure 7a. Another five 
isotherm loops of 0--0.15, 0.29, 0.44, 0.58, and 0.73, at axial 

T a b l e  3 Comparison of Nu for the circular duct (c<*= 1.0) 

Nu 

H* Present study Soliman TM 

0.2 3.760 3.819 
0.4 4.466 4.770 
0.6 7.550 8.930 
0.7 12.250 14.770 
0.8 15.996 16.090 

T a b l e  4 Estimate of the thermal entrance length, L*, for the elliptic 
duct  wi th  four fins 

L* 

• * H* = 0 H* = 0.5 H* = 0.9 H* = 1.0 

0.25 0.0846 0.095 0.102 0.107 
0.5 0.044 0.100 0.0532 0.0596 
0.8 0.0343 0.0994 0.0424 0.0471 

170 Int. 3. Heat and Fluid Flow, Vol. 12, No. 2, June 1991 



Numerical analysis of thermally developing flow: Z. F. Dong and M. A. Ebadian 

Ob 

Figure 6 
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Y 
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(b) 
Figure 7 (a) Isotherm for Z=0.0125, =*=0.25, H*=0.5; (b) 
isotherm for Z=0.0625, ~t* =0.25, H* =0.5 

Figure 8 
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distance Z=0.0625 ,  are presented in Figure 7b. It is evident 
that the temperature field is influenced seriously by the attached 
fins. The isotherms are no longer of elliptic shape, but become 
irregular. It is further observed that the inlet effect decreases 
as the axial distance increases. 

Figures 8 through 10 show the variation of the local Nusselt 
number,  (Nu=),, against the entrance length, Z,  for ~t*= 0.25, 

0 .5 ,  0 .8 ,  a n d  a combinat ion of different relative fin heights. It 
is seen that (Nu=), decreases from a high value near the entrance 
to the fully developed value at a greater axial distance, which is 
also presented in Table 2. It is also seen that the fully developed 

(Nuz)s 

Figure 9 

(NUz) s 

Figure 10 

(Nuz), 

Figure 11 
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Nusselt number, (Nu),, for the finned elliptic duct is four times 
higher than that given for the smooth elliptic duct (without 
fins) in different cases. Figure 11 displays the variation of the 
local Nusselt number, (Nu=)s, as defined in Equation 13 with 
axial distance for the case of ~t*=0.25. The Nusseit number 
behavior, decreasing with increasing axial distance, holds for 
different fin heights. However, it is not easy to estimate the 
effects of the relative fin height in this figure. Therefore, (Nu=)~ 
is suitable for comparing the results for the finned elliptic duct 
with those for the smooth elliptic duct (without fins). 

Concluding remarks 

Convective heat transfer in the elliptic duct with four internal 
longitudinal fins is analyzed numerically for various combi- 
nations of relative fin heights and minor-axis to major-axis 
ratios in the elliptic duct. The fins are considered continuous 
and of zero thickness. The boundary-fitted coordinate is used 
to solve the difficulty induced by the computational domain. 
Thermal developed and developing heat transfers with a laminar 
fully developed velocity field and a comparison with the 
available literature are obtained and presented in this article. 
The results indicate that there exists an optimum relative fin 
height that gives a maximum heat transfer coefficient at a given 
value of ~*. The bulk temperature and the Nusselt number 
variation with axial distance are illustrated graphically. As 
expected, a large heat transfer coefficient in the entrance region 
is obtained, approaching asymptotically the fully developed 
value at a greater axial distance where the Nusselt number, 
(Nu),, for the finned elliptic duct is four times higher than that 
for the smooth elliptic duct without fins in different cases. 
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